SPHEREX: An All-Sky Spectral Survey

Designed to Explore

Origin of the Universe
 Origin and History of Galaxies
 Origin of Water in Planetary Systems

The First All-Sky Near-IR Spectral Survey

A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Elegantly Simple

Single Observing Mode
 No Moving Parts
 Large Technical & Scientific Margins

Jamie Bock Caltech/JPL ^{2 June 2020}

Selected for the next MIDEX mission Feb 2019 What are the Most Important Questions in Astrophysics?

As Stated in the NASA 2014 Science Plan

How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?

"Discover and study planets around other stars, and explore whether they could harbor life"

SPHEREx in a Nutshell

*In phase A

slide 3

Wide-Field Telescope: Large A Product

V-Groove Passive Cooling System

High-Throughput LVF Spectrometer

H2RG pixel x

slide 6

Spectroscopy with Linear Variable Filters

Reflected by Dichroic

Shifting the spacecraft pointing modulates the wavelength at which an object is observed.

A complete spectrum in 48 exposures Each exposure takes ~150s

1 complete spectrum every 6 months

LVF surveys

somewhat novel to astrophysics but have been used for great results in planetary

LEISA - New Horizons

SPHEREx in Low Earth Orbit

Keep spacecraft axis > 91° from the sun < 35° from local zenith

"Terminator" orbit follows the sunrise-sunset line

SPHEREx Sky Coverage for 1 Wavelength

25 Months = 4 complete surveys

What are the Most Important Questions in Astrophysics?

As Stated in the NASA 2014 Science Plan

How Did the Universe Begin?

"Probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity"

How Did Galaxies Begin?

"Explore the origin and evolution of the galaxies, stars and planets that make up our universe"

What are the Conditions for Life Outside the Solar System?

"Discover and study planets around other stars, and explore whether they could harbor life"

Q1: How Did the Universe Begin?

SPHEREx observes the 3D distribution of galaxies, uses Non-Gaussianity to probe inflation physics

The Remarkable Theory of Inflation

Inflation Passes All Tests to Date!

From precise CMB measurements:

The Planck Satellite

- V Universe is geometrically flat
- V There are coherent structures larger than the classical horizon
- ✓ Fluctuations have a nearly "scale invariant" spectrum
- ✓ Fluctuations are in phase
- ✓ Fluctuations have Gaussian statistics

Planck CMB Map has Gaussian Statistics

How Do We Probe Inflation Physics? Observables

1. Inflationary gravitational waves – CMB polarization

2. Non-Gaussianity – Sensitive to Inflaton field, single- or multi-field

CMB Non-Gaussianity: $f_{NL} < 10.8$ (2 σ) limited by cosmic noise

Planck 2015 results

Large-Scale Structure will give best non-Gaussianity measurements

Quantified by 3D correlations between galaxies:

Pairs (2-point func)

Triples (3-point func)

Non-Gaussianity appears on largest spatial scales – <u>need large volume survey</u>

Redshifts with SPHEREx

We extract the spectra from *known* galaxy positions Controls blending and confusion

We compare each spectrum to a template library: For each galaxy: redshift, type and redshift error

Many self-consistency tests using SPHEREx data, spectral models, and external redshift catalogs

Detected galaxies> 1 billionGalaxies $\Delta z/1+z < 10 \%$ > 450 millionGalaxies $\Delta z/1+z < 0.3\%$ > 10 million

Visualization by Salman Habib, ANL

SPHEREx Tests Inflationary Non-Gaussianity

- Single-field models predict $f_{\rm NL} < 0.01$
- Multi-field models predict $f_{NL} \gtrsim 1$
- Non-inflationary models (Steinhardt et al.) predict $f_{\rm NL} \simeq 1$

• SPHEREx sensitivity is $\Delta f_{NL} < 0.5 (1\sigma)$

Q2: How Did Galaxies Begin?

SPHEREx extragalactic background light measurements determine the total light emitted by galaxies

Problem with Absolute Photometry: Foregrounds!

Relating Galaxies to Dark Matter

Dark Matter from Numerical Simulation (z = 2)

Dark Matter Clumps Color-Coded by Mass

On large scales: Light traces dark matter → Use to measure light production

Large Scale Structure Herschel-SPIRE measurements at far-infrared wavelengths

Near-Infrared Clustering Measurements

Both measurements show large clustering signal

Exceeds light produced by known galaxy populations

First stars (redshifts > 6)?

Intra halo light (redshifts 0 – 2)? SPHEREx: multi-wavelength measurements!

Surveying Cosmic History of Galaxies

Intensity mapping measures light emitted by *everything that gravitationally clusters*

- Traces faint light associated with dark matter
 - Emission from all galaxies
 - Dwarf galaxies responsible for reionization
 - Diffuse emission from stripped stars
 - Dark matter decay (?)
- Complements galaxy-by-galaxy surveys
- Method used on CIBER, Spitzer, Herschel, Planck

Spectroscopy is key for untangling cosmic history

Q3: What Are the Conditions for Life Outside the Solar System?

Sourced by <u>interstellar ices</u>, rich in biogenic molecules: H₂O, CO, CO₂, CH₃OH... Current debate: did earth's water come from the Oort cloud, Kuiper belt or closer? Did water arrive from asteroids or comets?

SPHEREx will measure the H_2O , CO, CO_2 , CH_3OH ice content in clouds and disks, determining how ices are inherited from parent clouds vs. processed in disks

SPHEREx Surveys Ices in All Phases of Star Formation

SPHEREx Creates an All-Sky Legacy Archive

A spectrum for every 6" pixel on the sky

What Would You Do with the Archive?

2018 Workshop at CfA Synergies with NASA Missions

2020 Workshop at CCA Collaborative Opportunities

2016 Workshop: Survey Science Ideas

Object	# Sources	Legacy Science		
X-ray all-sky survey	> 100,000	Detect eROSITA source SEDs and spectroscopic redshifts		
Exoplanet characterization	10,000 of 600,000	With GAIA, determine precise radii for host stars		
Deuterated PAHs		Probe and possible map deuterated PAHs, complete inventory of D in local ISM		
Lowest metallicity stars	~1000	Identify low-mass stars by their IR signatures, map distribution in Galaxy		
Asteroids and comets	100,000	Spectrally classify numerous asteroids; CO/CO ₂ ratios in comets		
Nearby galaxies	>100 million	Spectrally image galaxies to trace stellar populations, star formation, etc		
Your idea here!	TBD			

Three workshops: Over 120 non-SPHEREx scientists **Charter:** Identify new science, tools and data products

Two examples of new science from the workshops

Exoplanet masses

X-ray synergies

SPHEREx science: Doré et al. 2014 SPHEREx workshops: Doré et al. 2016 & 2018

SPHEREx Science Team

Jamie Bock **Rachel Akeson** Matt Ashby Lindsey Bleem **Peter Capak Tzu-Ching Chang** Asantha Cooray **Brendan Crill Roland de Putter Olivier Doré Tim Eifler** Salman Habib Katrin Heitmann **Chris Hirata** Woong-Seob Jeong **Davy Kirkpatrick Phil Korngut** Elisabeth Krause **Carey Lisse Daniel Masters** Phil Mauskopf Gary Melnick **Hien Nguyen** Karin Öberg **Roger Smith Yong-Seon Song** Harry Teplitz Volker Tolls **Steve Unwin** Mike Werner **Rogier Windhorst** Yujin Yang Mike Zemcov

Caltech/JPL IPAC CfA Argonne IPAC JPL UC Irvine JPL Caltech JPL U. Arizona Argonne Argonne **Ohio State** KASI IPAC Caltech U. Arizona JHU Caltech Arizona State CfA JPL CfA Caltech KASI **IPAC/Caltech** CfA JPL JPL Arizona State KASI RIT

Principal Investigator Stellar catalog Interstellar ices Galaxy cluster catalog Galaxy redshifts Intensity mapping Extragalactic backgrounds **Pipeline architect** Cosmology Project Scientist LSST/DESI synergies Cosmology simulations Cosmology simulations Cosmology KASI PI Brown dwarfs Instrument Scientist Cosmology Solar system catalog Spectral redshift fitting Survey planning Interstellar ices Instrumentation Ice properties **Detector** arrays Cosmology Data Archive Ices pipeline Interstellar ices Legacy science JWST synergies Survey science Data pipeline

Thanks for listening!

Backup

BICEP-Keck Constraints on Inflationary Gravitational Waves

r = tensor to scalar ratio, i.e. amplitude of inflationary gravitational-wave background

February 2020: BICEP Array first light!

All published polarization constraints on Inflationary Gravitational Waves

Experiment	Year	Bands [GHz]	σ(r)	
DASI	2004	2636	7.5	
BICEP1 2yr	2009	100, 150	0.28	
WMAP 7yr	2010	3060	1.1	
QUIET-Q	2010	43	0.97	
QUIET-W	2012	95	0.85	
BICEP1 3yr	2013	100, 150	0.25	
BICEP2	2014	150	0.10	
BK + Planck	2015	150 + Planck	0.034	
BK14	2015	95, 150 + P	0.024	
ABS	2018	150	0.7	
Planck	2018	30353	~0.2	
BK15	2018	95,150,220 + P	0.020	
Polarbear	2019	150 + Planck	0.32	
BK18	2020	95,150,220 + P	0.010 (est)	

Non-Gaussianity and B-Modes are Complementary

Single-field models from CMB-S4 Science paper

Multi-field models

- Multi-field with primordial perturbations
 generated by inflaton
- Primordial perturbations generated by second field (i.e. spectator-dominated models)

Primordial non-Gaussianity discriminates between models Single-field inflation $\rightarrow f_{NL} \ll 1$ Multi-field inflation $\rightarrow f_{NL} \gtrsim 1$ Cyclic models $\rightarrow f_{NL} \sim 1$ (Steinhardt, Ijjas)

Cosmology with CMB-S4 + SPHEREx

- Galaxy x CMB lensing SPHEREx gives galaxy bias Measures the growth of structure D_G over a wide redshift range -- Probes gravity on large scales
 - -- Constrains the amplitude Alens
- Baryonic Kinetic SZ Effect SNR ~ 55 using precision redshift sample and CMB map SNR >100 cross-correlating lower-

accuracy sample and T² -- e.g. Doré *et al*. 2003

- Galaxy Cluster Redshifts

 CMB-S4 and eROSITA will find
 100,000+ massive clusters
 SPHEREx will also find ~100,000
 SPHEREx provides redshifts
 - $-\sigma_z / (1 + z) < 0.03$ for z < 0.9
 - -- Virial masses for large samples

SPHEREx Cluster Redshift Errors*

*Simulated by Lindsey Bleem, ANL

SPHEREx Measures Large-Scale Fluctuations

Continuum Anisotropy

Line Tomography

- Amplitude gives line light production
- Multiple lines trace star formation history
 - High S/N in H α for z < 5; OIII and H β for z < 3
 - Ly α probes EoR models for z > 6
 - H α and Ly α crossover region 5 < z < 6
- Example above uses $H\alpha + H\beta$ to solve for SFRD and dust attenuation simultaneously
- SPHEREx has ideal wavelength coverage and high sensitivity
- Multiple bands enable correlation tests sensitive to redshift history
- Method demonstrated on Spitzer & CIBER

SPHEREx All-Sky Survey Data Products & Tools

Notable Features of the SPHEREx All-Sky Survey

- High S/N spectrum for every 2MASS source
- Solid detection of faintest WISE sources
- Catalogs ideal for JWST observations

Users have access to data exploration, analysis, and visualization tools

- On-the-fly Mosaics
- Photometry on Known Position
- Spectral Data Cube Extractor
- Variable Source Extractor
- Source Discovery

Plus: Legacy Catalogs

- Exoplanet Target Stars
- Solar System Objects
- Galaxy Clusters

Estimated source numbers

Detected galaxies	> 1 billion			
Galaxy spectra ∆z/1+z < 10 %	> 450 million			
Galaxy spectra ∆z/1+z < 0.3%	> 10 million			
Quasar spectra	> 1.5 million			
Main sequence stars	> 100 million			
Exoplanet target stars	> 600,000			
Low-mass stars (LTY)	> 400			
X-ray counterparts	> 100,000			
Clusters	> 100,000			
Asteroids & comets	> 100,000			

SPHEREx Large Volume Galaxy Survey

SPHEREx Large-Volume Redshift Catalog

- Largest effective volume of any survey, near cosmic limit
- Excels at z < 1, complements dark energy missions (Euclid, WFIRST) targeting z ~ 2
- SPHEREx + Euclid measures gravitational lensing and calibrates Euclid photo-zs
- Survey Designed for Two Tests of Non-Gaussianity
 - Large scale power from **power spectrum**: large **#** of low-accuracy redshifts
 - Modulation of fine-scale power from **bispectrum**: fewer high-accuracy redshifts

SPHEREx Solar System Science

SPHEREx spectrally surveys solar system objects over the full sky $6 < K_{AB} < 19$:

- 100,000 asteroids
- 100s of comets and Centaurs
- 1000s of Jovian Trojans
- 10s of the largest KBOs

Selected exciting investigations:

- Distinguish the size, albedo, and composition of the Main Belt Asteroids – necessary for future resource utilization, hazard mitigation, supporting the NASA OSIRIS-Rex and PSYCHE missions.
- Determine the chemical abundances of **Comets**, the most pristine leftovers from the era of formation of our solar system
- Determine the composition of the Trojan Asteroids in support of the NASA LUCY mission, and help determine if they are captured KBOs
- Obtain bi-yearly measurements of Outer Moons & KBOs, allowing us to search for changes in their surfaces & atmospheres

Space Observations Key to Controlling Systematic Errors

Systematic	Mitigation/Control	Amplitude	Conversion to δn/n	Technique Reference	Coherent on large scales?	δn/n% rms/dex
Galactic extinction	Observe in infrared, template deprojection	0.003 mag rms before mitigation	1.4 /mag	e.g., Pullen & Hirata (2013)	Yes	0.064
Noise selection non- uniformity	Inject simulated objects into real	0.2 mag rms before mitigation	0.017/mag	_ Suchyta et al. (2016), Huff et al. (2014)	Yes	0.017
Noise redshift non- uniformity	data; template deprojection		0.062/mag			0.06
Non-uniformity in external catalogs	Above + select from SPHEREx data, cross-calibrate, flux cut selection	NA	NA	All of the above	Yes	0.1
Source blending in redshift estimates	Control effective PSF FWHM; mask blended sources in Pan-STARRS/ DES/WISE catalog	NA	NA	Laidler et al. (2007), Lang et al. (2016)	No	Counted in end- to-end simulations
Source blending in clustering measurement	Small-scale correction using forward modeling and mock catalogs	Within cosmic variance	NA	Hahn et al. (2017)	No	Negligible
Detector hysteresis	Mask pixels based on photometric history	~0.13% pixels lost per exposure	NA	Smith et al. (2008), Rauscher et al. (2014)	No	Negligible
Cosmic rays	Flag contaminated pixels; do not observe in SAA	~0.22% pixels lost per exposure	NA	Zemcov et al. (2016)	No	Negligible
Absolute calibration	Calibrate on spectral standards and flat-field; overlapping bands	Control <3% to meet <6% science reg't	0.32% × (cal. err.) ^{1/2}		Yes	0.056
Channel-to channel calibration	Calibrate on spectral standards and flat-field	Control <2% bin-bin to meet <6% science req't	0.19% × (cal. err.) ^{1/2}	Fixsen et al. (2000)	Yes	0.027
Calibration stability	Monitor calibration on orbital timescales using deep fields	<1% drift over 4 surveys	5% × drift	Cutri et al. (2018)	Yes	0.05
PSF and astrometry knowledge	Centroid and sub-pixel stack on 2MASS stars	<0.5% photometric error	NA	Bock et al. (2013)	No	Counted in calibration budget and simulations

SPHEREx Systematic Error Control Strategy:

Infrared Observations from Space mitigate large-scale errors from atmosphere and Galactic extinction Stable In-Flight Calibration controls gain and PSF/astrometry errors on orbital to annual timescales Catalog-Driven Galaxy Selection mitigates galaxy confusion – just discard known blends Redshift Validation use known spec-zs to test redshift errors, split by type, location, etc

For details see: Doré et al. arXiv 1412.4872

Measuring Primordial Non-Gaussianity to $\sigma(f_{NL}) < 1$

A test to distinguish between single- and multi-field Inflation

Single-Field Inflation:

Squeezed limit consistency condition by Maldacena (2003): $f_{NL}^{(infl)} \sim (n_s - 1) << 1$

Multi-Field Inflation:

Non-Gaussianity Produces Two Signatures

Enhanced power on large spatial scales Φ_L

Modulated small-scale power $\Phi_{\rm S}$ on large scales $\Phi_{\rm L}$ due to non-linear mode coupling

- measured with power spectrum and bispectrum

SPHEREx Galactic Ice Survey

Schematic of a Protoplanetary Disk

"High-quality ice source" means

- Embedded behind dust
- Bright (SNR > 100 per channel)
- Isolated

Estimate Errors on Absorption Depth

Expect ~1 Million High-Quality Ice Detections

Why Study Ices?

Gas and dust in molecular clouds are the reservoirs for new stars and planets

- In molecular clouds, water is 100-1000x more abundant in ice than in gas
- Herschel observations of the TW Hydrae disk imply the presence of 1000s of Earth oceans in ice (Hogerheijde *et al.* 2011)
- Models suggest water and biogenic molecules reside in ice in the disk mid-plane and beyond the snow line
- Ideal λs to study ices: 2.5 5 μm
- Includes spectral features from H₂O, CO and CO₂
- Plus chemically important minor constituents NH₃, CH₃OH, X-CN, and ¹³CO₂

Schematic of a protoplanetary disk

ISO absorption spectrum

Testing Redshift Reliability

Inject Real Galaxies into SPHEREx Pipeline

Example Template and Redshift Fits

CMB-S4: CMB Lensing Cross-Correlation

- The SPHEREx galaxy clustering measurement covers the full sky and is cosmic variance limited on large scales
- SPHEREx determines galaxy bias b_g from the galaxy power spectrum analysis
- Given b_g, Galaxy x CMB lensing: Measures the growth of structure D_G over a wide redshift range
 Probes gravity on large scales
 - -- Constrains the amplitude Alens

Calculation by E. Schaan

Doré, Werner++16

CMB-S4: kSZ Cross-Correlation

- SPHEREx + CMB-S4 greatly increase our ability to measure the baryon component of the kinematic Sunyaev-Zel'dovich effect
- Using the velocity reconstruction method, and using only the two highest redshift accuracy (~24.5M galaxies)
 S/N~55 assuming half the sky (CMB map noise of 14 μK-arcmin)
- Using direct cross-correlation between T² and δ_{gal} (Doré++03, Hill++16, Ferraro++16) allows a statistical measurement with less stringent requirements on redshift errors:

S/N > 100 can be achieved by combining SPHEREx with future CMB experiments