

CCAT-Prime

Science Goals

Overview of Observatory, Instruments,

Thomas Nikola (Cornell University)

2020-05-05

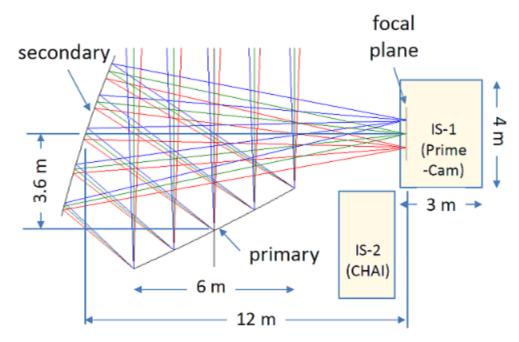
 Following slides and information was mostly taken from a recent "remote" CCAT-prime workshop hosted by Mike Fich in Waterloo.

CCAT Partnership

- CCAT Observatory, Inc.
 - Cornell University
 - German consortium led by University of Cologne
 - Cologne, Bonn, Max Planck Inst. for Astrophysics
 - CATC, membership in CCAT Observatory, Inc through Venture Agreement
- CATC (Canadian Atacama Telescope Corp.)
 - Canadian consortium led by University of Waterloo
 - Waterloo, Toronto, British Columbia, Calgary, Dalhousie, McGill, McMaster, Western Ontario
 - CATC "Observers"/partners: St. Mary's, Manitoba, Lethbridge, Alberta, National Research Council
- TAO Tokyo Atacama Observatory
 - Share mountain top constructing road
 - Draft agreement to share common costs (road maintenance, power, ...)

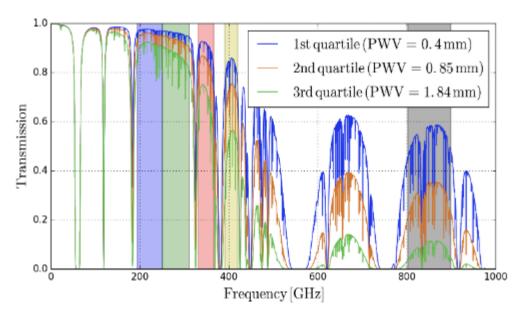
Project Personnel

- Director
 - Terry Herter
- Project Manager
 - Jim Blair
- Project Engineer
 - Steve Parshley
- Deputy Project Engineer
 - Ronan Higgins
- Software Manager
 - Mike Nolta
- Power Consultant
 - John Kiefer


- Construction Manager & TAO
 Liaison
 - Pedro Correa
- Project Scientist
 - Gordon Stacey
- CHAI Instrument Scientist

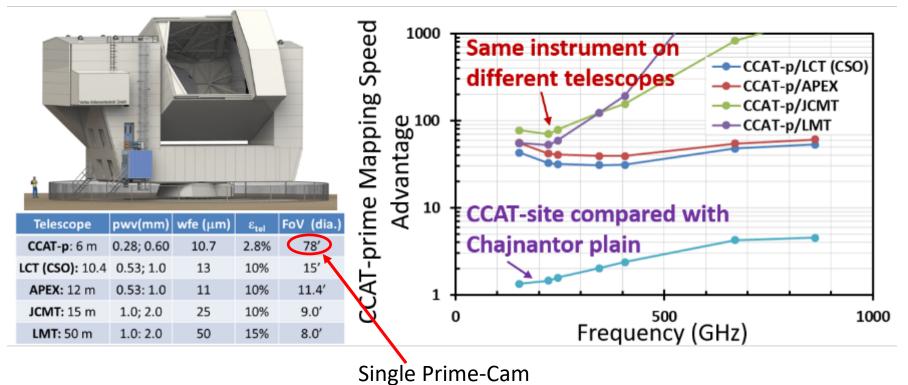
 Urs Graf
- Prime-Cam Instrument Scientist & Simons Observatory Liaison
 - Mike Niemack

CCAT-Prime Telescope

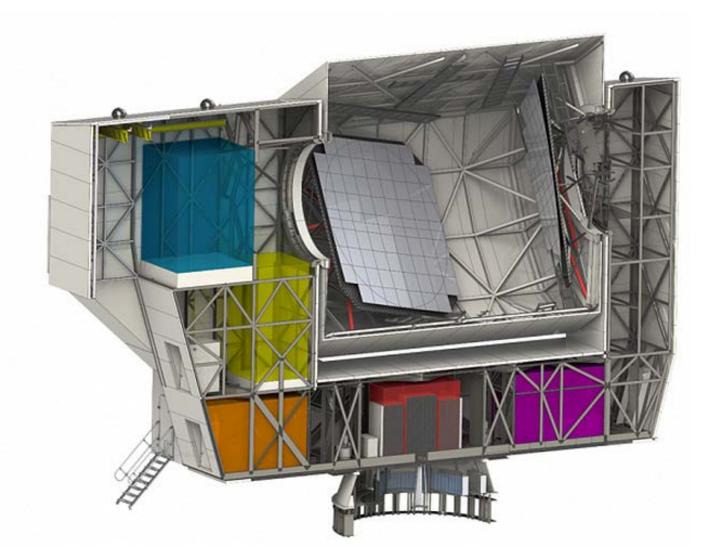

- Aperture: 6 m
- Optimized for submillimeter/millimeter wavelengths
- Coma-corrected, cross-Dragone telescope design
- Surface half-wavefront error: <11 μm
- Low emissivity optical design: <2.8% (goal <1%)
- Large field of view
 - ~7.3° x 6.5° at 3 mm
 - ~2.5° x 2° at 350 μm
- Pointing Error: <1.4"
- Scan Speed:
 - $> 0.33^{\circ} \text{ s}^{-1} \cdot (\lambda/350 \mu \text{m})$ (in azimuth; half in elevation)

CCAT-prime Site

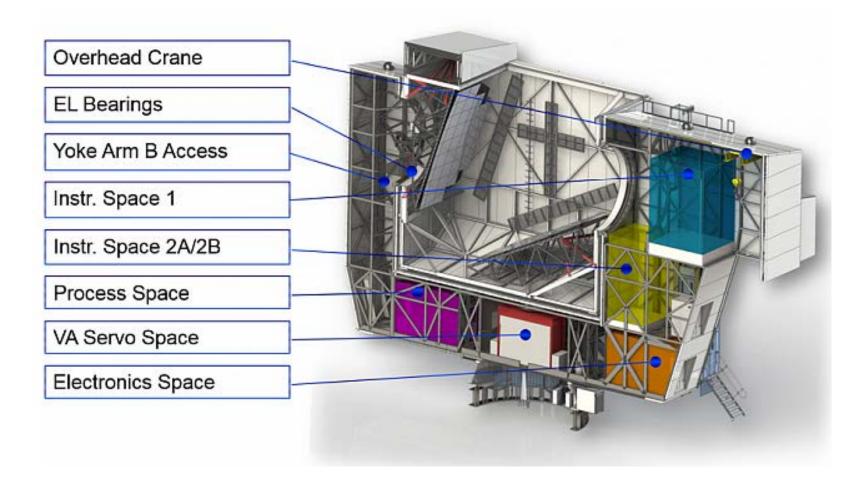
- Location:
 - Cerro Chajnantor
 - 5600 m
 - Above ALMA plateau



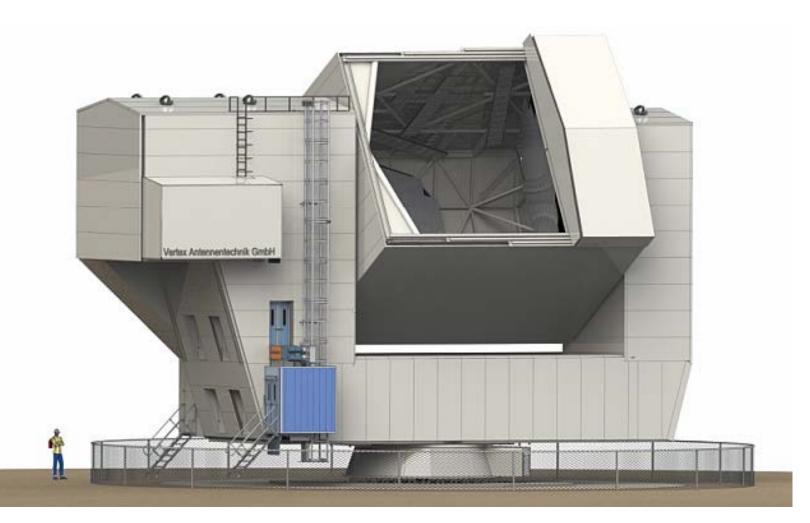
CCAT-prime Site

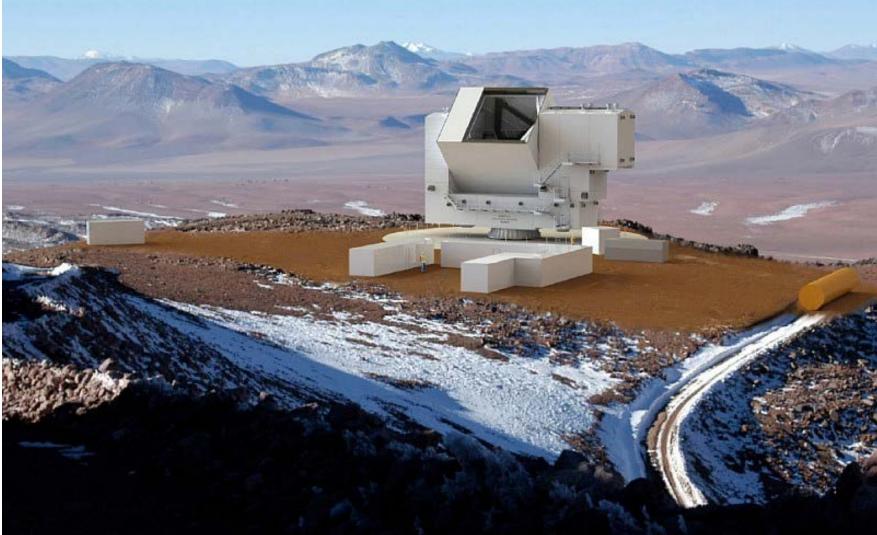


 The extra ~600 m above ALMA plateau make a big difference



Instrument Module (1/7)





- Telescope is fully funded
 - Mostly by private donor, but also University funds
- Prime-Cam Instrument:
 - Cryostat & some closed cycle cooling systems are also funded by University and start-up funds
 - Seeking funds for detectors and individual instrument modules
- Construction has started
- First light expected end of 2021/start of 2022

CCAT-prime Construction

Base-ring for telescope

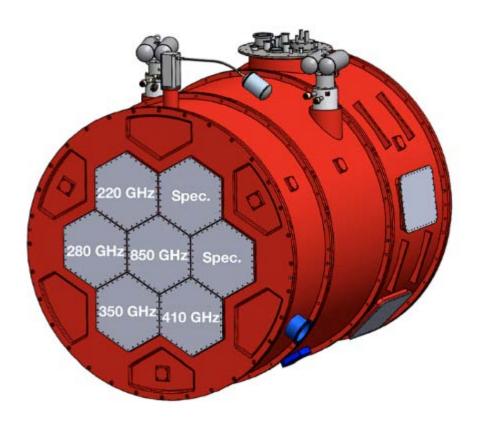
Preparation of site for test-assembly in Germany 2020

Telescope Site: Road construction

Science goals

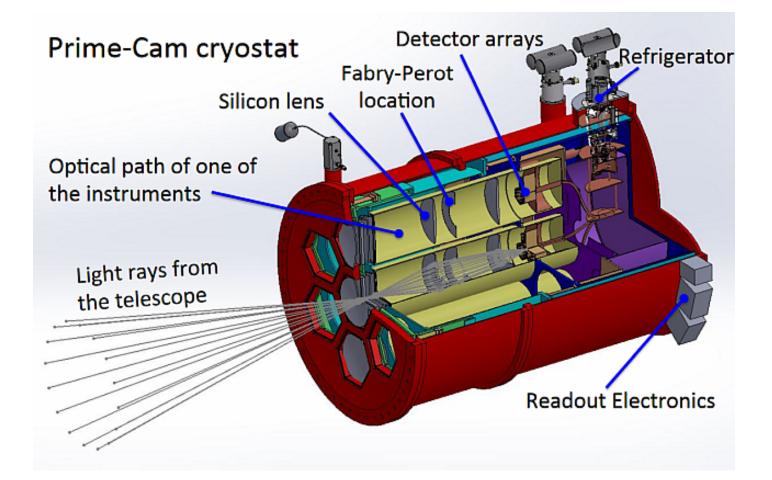
- Probing the Epoch of Reionization (EoR) using redshifted [CII] 158 μm line emission
- Tracing galaxy evolution and galaxy cluster formation via Sunyaev-Zeldovich effect
- Measuring CMB foregrounds to constrain inflation
- Studying the physics of star formation in the Milky Way and nearby galaxies.
- Probing galaxy evolution from the first billion years to Cosmic Noon through observations of the infrared background
- Improving constraints on new particle species through observation of Rayleigh Scattering

Instruments


• Prime-Cam

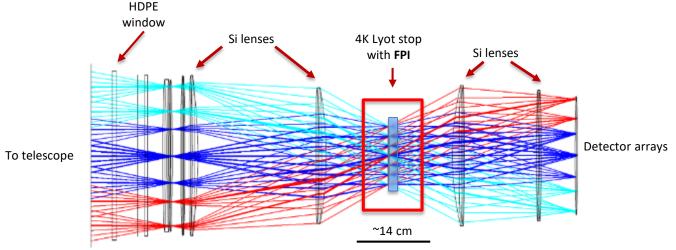
- Direct detection instrument
- Modular camera/spectrometer instrument
- Covering ~8 degree field of view
- CHAI
 - Heterodyne spectrometer
 - High-spectral resolution

Prime-Cam



- A modular instrument
 - 7 independent instrument modules
 - Each module has a FoV ~ 1.3°
 - Instrument size:
 - ~1.8 m diameter
 - ~2.5 m long
- Angular resolution on CCAT-prime:
 - 57" at 220 GHz
 - 14" at 850 GHz

Prime-Cam

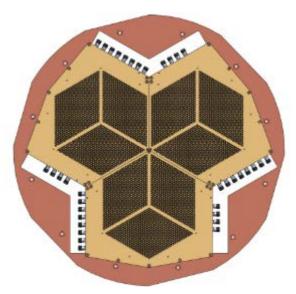


Eve Vavagiakis

Prime-Cam Optics

- Optical design of each instrument module is similar
 - Slight differences due to off-axis locations
 - Number of lenses and optimization for camera modules differ slightly from spectrometer module

Optical design of spectrometer module


Prime-Cam Detectors

- Large format MKID detectors from NIST (Hubmayr, Wheeler)
 - "spin-offs" from BLAST-TNG and ToITEC
 - Feedhorn coupled

Mechanical designs of a single array mount

Focal plane layout of a single instr. module with 3 arrays

Cody Duell (Cornell)

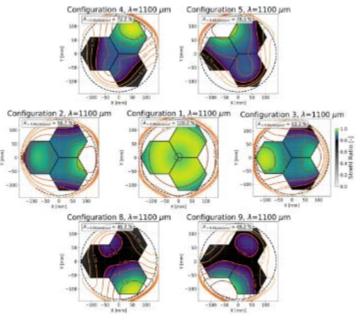
Prime-Cam Detector Readout

- Readout for first-light detectors: ROACH-2

 One ROACH-2 is limited to readout ~500 1000 detectors
- Planning to use Xilinx RFSoC- based readout for full Prime-Cam
 - 1 RFSoC based readout system reads ~5000 detectors
 - RFSoC readout has reduced power consumption

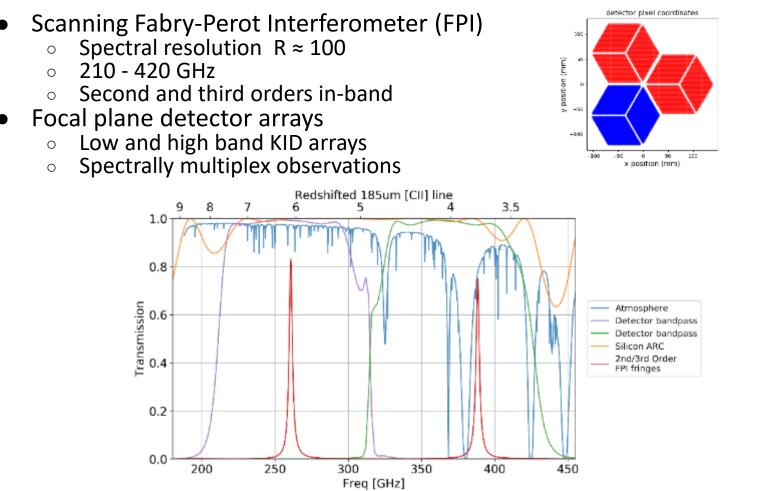
RFSoC

Cody Duell (Cornell)


Roach-2

Prime-Cam Detectors

Detectors
~8,000
~10,000
~21,000
~10,000
~21,000


Choi+ 2020JLPT

Gallardo+ 2018SPIE

EoR-Spectrometer Module

Cothard et al. 2019 arXiv:1911.11687

Prime Cam Sensitivity

Survey	Field ID	LST range	Area	Time	Sensitivity ^c	Supporting
		[h]	[deg ²]	[hr]	(@ representative $\nu_{obs}[GHz]$)	Surveys ^b
EoR^a	E-COSMOS	7.0-13.0	8	2000	$0.02 \mathrm{MJy}\mathrm{sr}^{-1}\mathrm{bin}^{-1}$ @ 220	1
	E-CDFS	23.5-7.0	8	2000	$0.02 \mathrm{MJy}\mathrm{sr}^{-1}\mathrm{bin}^{-1}$ @ 220	2
	HERA-Dark	13.0-23.5	8	(filler)	$0.02 \mathrm{MJy}\mathrm{sr}^{-1}\mathrm{bin}^{-1}$ @ 220	3
DSFG	Stripe 82	20.0-5.5	300	500	2.5 mJy beam ⁻¹ @ 860	4
	GAMA9/12/15	5.5-20.0	110	180	2.5 mJy beam ⁻¹ @ 860	5
SZ/CMB	AdvACT/SO	all	12,000	4000	11 μK/arcmin ² (CMB) @ 270	6

^{*a*}Spectroscopy; sensitivities provided for *R*=100. ^{*b*}(1) Deep Subaru HSC+PSF spectroscopy & COSMOS X-Ray-to-meter-wave multiwavelength survey; (2) deep Euclid grism spectroscopy (upcoming), HERA HI 21 cm (upcoming), & H-UDF/CDF-S multiwavelength surveys (incl. JWST GTO); (3) HERA HI 21 cm (upcoming), VLASS; (4) SDSS, HeLMS/HeRS Herschel/SPIRE, VLASS; (5) GAMA, H-ATLAS Herschel/SPIRE, ACT, VLASS; (6) Planck, SDSS, DES, ACT, SO, DESI, LSST, eROSITA (upcoming). ^{*c*}Preliminary model; an enhanced noise model will be presented by Choi, S. et al. (2019), in prep.

Prime-Cam Survey Sensitivity

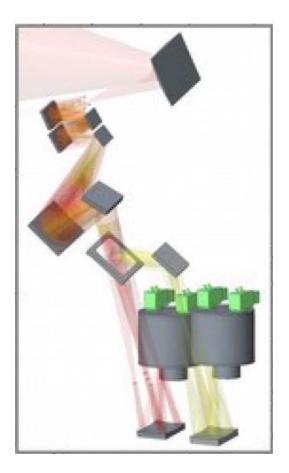
	Broadband channels wide survey (15,000 deg ² ; 4,000 hours)							
	V	Δv	Resolution	NEI	Sensitivity	NET	N _{white}	N _{red}
_	GHz	GHz	arcsec	Jy sr ^{-1} \sqrt{s}	μ K-arcmin	$\mu K \sqrt{s}$	μK^2	μK^2
-	220	56	57	3,700	15	7.6	1.8×10^{-5}	1.6×10^{-2}
	280	60	45	6,100	27	14	6.4×10^{-5}	1.1×10^{-1}
	350	35	35	16,500	105	54	9.3×10^{-4}	2.7×10^{0}
	410	30	30	39,400	372	192	1.2×10^{-2}	1.7×10^{1}
	850	97	14	6.0×10^{7} [†]	5.7×10^{5}	3.0×10^{5}	2.8×10^{4}	6.1×10^{6}

Broadband channels star formation survey in 1st quartile PWV (410 deg²; 680 hours)

v GHz	Δv GHz	Resolution arcsec	NEI Jy sr $^{-1}\sqrt{s}$	Sensitivity µK-arcmin	NET $\mu K \sqrt{s}$	$\frac{N_{\text{white}}}{\mu \text{K}^2}$	$\frac{N_{\rm red}}{\mu {\rm K}^2}$
220	56	57	3,000	6	6.3	2.9×10^{-6}	2.5×10^{-3}
280	60	45	4,900	11	11	1.0×10^{-5}	1.7×10^{-2}
350	35	35	12,300	42	40	1.5×10^{-4}	4.3×10^{-1}
410	30	30	27,400	149	134	1.9×10^{-3}	2.7×10^{0}
850	97	14	3.8×10^{7} [†]	2.3×10^{5}	1.9×10^{5}	4.5×10^{3}	9.8×10^{5}

Selected spectrometer channels targeted survey (8 deg²; 4,000 hours)

v GHz	∆ν [*] GHz	Resolution arcsec	[CII] redshift	NEI Jy sr ⁻¹ \sqrt{s}	$\frac{N_{ m white}}{ m Mpc^3 Jy^2 sr^{-2}}$
220	2.2	57	7.5	12,900	1.2×10^{9}
280	2.8	45	5.8	16,600	2.0×10^{9}
350	3.5	35	4.4	30,600	6.3×10^9
410	4.1	30	3.7	61,500	2.3×10^{10}


Choi+ 2020JLPT

CHAI CCAT-prime Heterodyne Array

	LowFrqArray	HighFrqArray
RF range [GHz]	455 – 495	800 - 820
Noise temp. (DSB) [K]	<100	<200
IF band [GHz]	4-8	4 - 8
Resolution [kHz]/[km/s]	100 / 0.06	100 / 0.04
Velocity coverage [km/s]	2500	1500
Beam size ["]	26	15
Field of view [' x ']	7.5 x 7.5	4.5 x 4.5

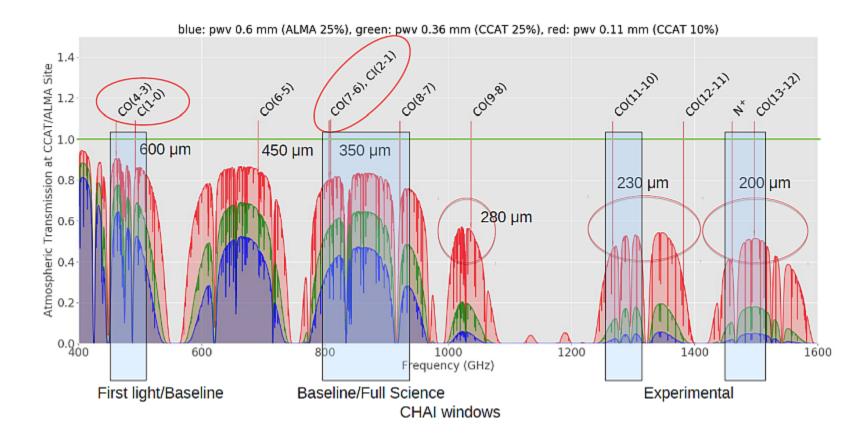
University of Cologne, Germany

Graf+ 2020

CHAI CCAT-prime Heterodyne Array

	LowFrqArray	HighFrqArray
RF range [GHz]	455 – 495	800 - 820
Noise temp. (DSB) [K]	<100	<200
IF band [GHz]	4 – 8	4 - 8
Resolution [kHz]/[km/s]	100 / 0.06	100 / 0.04
Velocity coverage [km/s]	2500	1500
Beam size ["]	26	15
Field of view [' x ']	7.5 x 7.5	4.5 x 4.5

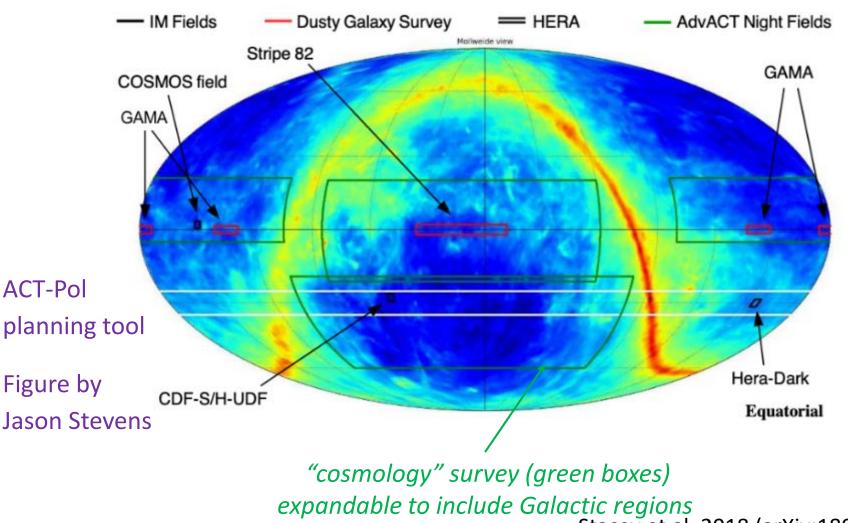
University of Cologne, Germany


Risacher+ 2016

CHAI 8x8 detector array footprint overlaid on SOFIA [CII] map of the horse head nebula

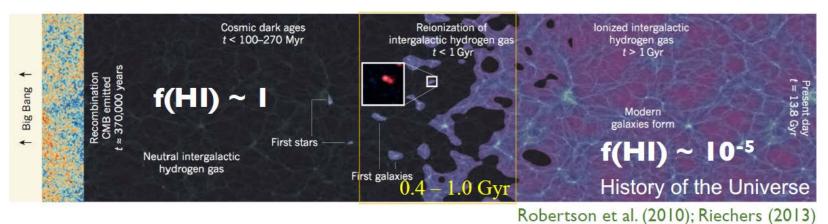
At 800 GHz CCAT-prime resolution is similar to SOFIA at 2 THz ([CII], [OI])

CHAI CCAT-prime Heterodyne Array



R. Simon; University of Cologne, Germany

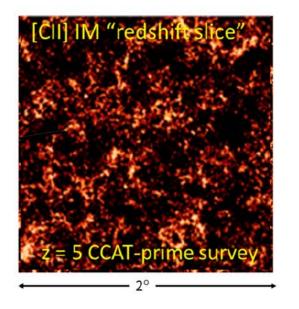
Survey Observing Strategy


Stacey et al. 2018 (arXiv:1807.04354)

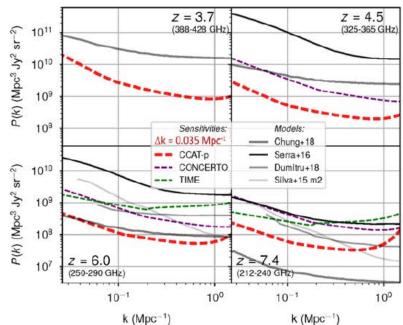
CCAT-prime: Science Working Groups

- <u>Tracing the Epoch of Ionization through Line Intensity Mapping</u> (Coordinators: *Stacey, Riechers*)
- <u>Galaxy and Cluster Formation</u> (Coordinators: *Battaglia, Basu*)
- <u>Tracing Dusty Star Formation over Cosmic Time</u> (Coordinators: *Chapman, Aravena*)
- <u>Characterizing foregrounds for CMB observations</u> (Coordinators: Niemack, Choi)
- <u>CMB Constraints on cosmological Rayleigh Scattering</u> (Coordinator: *Meerburg*)
- <u>New Windows into Time Domain Astrophysics</u> (Coordinator: *Johnstone*)
- <u>Tracing Star Formation in the Galaxy and Nearby Galaxies</u> (Coordinators: *Simon, Stutz, Nikola*)
- <u>Magnetic Fields and Galactic Science</u> (Coordinator: *Fissel*)

Epoch of Reionization

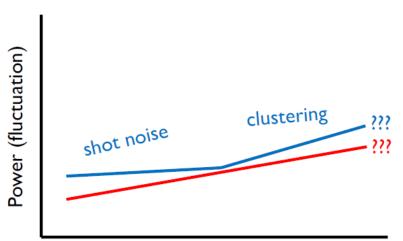

- Science goal:
 - Determine the topology and timescale of cosmic reionization
- [CII] line intensity mapping between redshifts 3.5-8
 - Measure aggregate emission from star forming galaxies, hence process of re-ionization
 - Trace evolution of structure during early galaxy formation

Riechers +


Epoch of Reionzation

- CCAT-prime survey:
 - early: 1 deg²/400h
 - baseline: 2.25 deg²/2500h
 - full: 9 deg²/6000h w/2 tubes

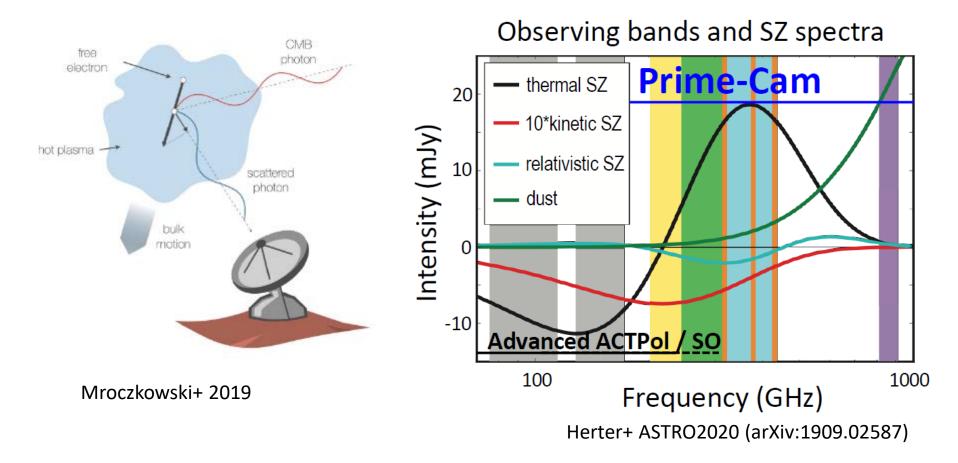
[CII] Intensity Mapping



Chung+ 2020 (arXiv:1812.08135)

Epoch of Reionization

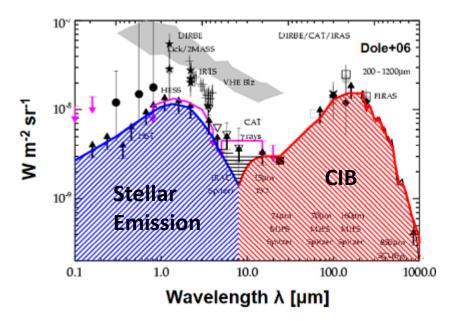
- Reionization timescale depends on the free mean path of the ionizing photons traveling in the Intergalactic Medium (IGM) and its density structure:
 - $\circ~$ Overdense region ionize first
 - o Galaxy clustering drive the evolution
 - Large-scale [CII] intensity/fluctuations due to clustering
 - Small-scale [CII] intensity/fluctuations measures galaxies



spatial scale (galaxies => clusters => LSS)

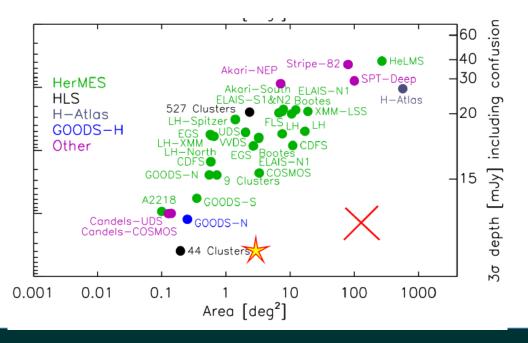
 CCAT-prime/Prime-Cam will also measure [OIII] 88 μm emission

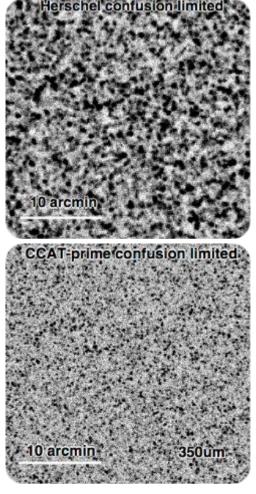
Riechers +


Galaxy and Galaxy Cluster Formation: using Sunyaev-Zeldovich Effect

Tracing Dusty Star Formation over Cosmic Time

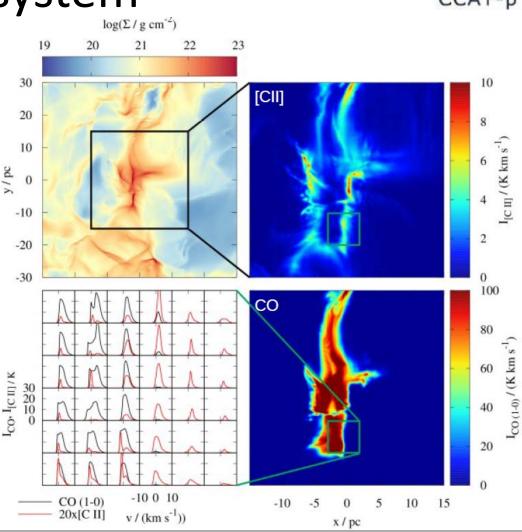
 About ½ of all energy radiated from galaxies is emitted in the Cosmic Infrared Background (CIB)


 At λ> 250 µm, only about 15% of CIB has been resolved into individual galaxies


Scott Chapman+

Tracing Dusty Star Formation over Cosmic Time

- Science goals:
 - Resolve up to 40% of CIB at 350 μm (confusion limit: 2.5 mJy at 350 μm)
 - Robust constrain of bright-end of Luminosity function
 - Impact on environment
 - Role of dusty SF galaxies in galaxy evolution
 - Study of "exotic" galaxies


Aravena+; Scott Chapman+

Galactic and Nearby Galaxies: "Ecosystem"

- CHAI observations
- Resolve structures within clouds (filaments)
- Dynamics of ISM (turbulence, mass flows, ...)
- CO (4-3) and (7-6), and both [CI] fine-structure lines observations

Comparing observations with synthetic maps: Example: continuum and spectra \rightarrow SILCC-Zoom Seifried et al. 2017, Walch et al. 2015

Simon+

Other CCAT-prime Science Drivers

- Measuring CMB foregrounds to constrain inflation
- Improving constraints on new particle species through observation of Rayleigh Scattering

Summary

- CCAT-prime construction is under way
- Cryostat for Prime-Cam instrument is being fabricated
 - Seeking funding for detectors
- Team is working on refining the observing strategies to optimize the science return

2016 CCAT. All Rights Reserved. www.ccatobservatory.org