

#### Jason Glenn, on behalf of the GEP team Infrared Science Interest Group, AAS, Jan. 8, 2019









Ball Aerospace & Technologies Corp.

## **GEP** Basics

- Observatory
  - 2.0 m, 4 K telescope
- Science Surveys
  - Cosmic evolution of star formation, SMBH accretion, ISM in galaxies
  - GEP-I 2 yr imaging surveys w/ photo-z's:
    3, 30, & 300 sq deg, allsky
  - GEP-S 2 yr long-slit spectroscopic surveys: targeted and 'blind'



Brad Moore & JPL Team X

## GEP Concept Study Outcome

- Design successfully closed under \$1B.
- Target launch date Jan. 1, 2029.
- Look for the NASA Astrophysics Probe concept studies special issue of the *Journal for Astronomical Instrumentation* this year!



#### **GEP Science Goals**



- 1. Map the history of galaxy growth by star formation and accretion by supermassive black holes and characterize the relation between those processes.
- 2. Measure the buildup of heavy elements, such as carbon, nitrogen, and oxygen, in the hearts of galaxies over cosmic time.

### **Cosmic Star Formation**



- Accurate and precise star formation rates across broad ranges of redshift and environment
- Brightening by gravitational lensing will probe to much higher redshifts.

These GEP simulations (Galacticus + Dale et al. spectra) only sample  $0 < z \le 3$ .

# Surveys and Photometric Redshifts



With 23 mid and far-IR spectral bands, GEP-I will measure the redshifts of millions of star-forming galaxies using the prominent PAH emission lines and silicate absorption.

# Disentangling Star-Formation and SMBH Accretion Rates



Jeremy Darling

Star formation & AGN will be separated with GEP-I's 23 IR bands. AGN indicators:

- Warm dust ('blue' mid-IR spectrum)
- Low PAH-to-continuum ratio

# Going Well Beyond the State of the Art





Simulated luminosity function measurements for 1.0 < z < 1.2compared to published measurements with  $1\sigma$  error ranges (dashed lines).

> GEP will measure IR luminosity functions of galaxies with high precision, to below L\* at z = 2.

#### **GEP-S Spectroscopic Surveys**



- 1. Precise redshifts & AGN markers
- 2. ISM physical conditions: stacking on  $\sim 10^6$  WFIRST grism galaxies detected in H $\alpha$  to correlate with mid / far-IR tracers
  - Feedback: High-velocity outflows
  - ≻ Stellar T<sub>eff</sub>: [N III] / [N II]
  - Densities around young stars: [O III] 52 μm / 88 μm
- 3. Metallicities in galaxy disks: extinction-free tracers, e.g. [Ne II]+[Ne III] / [S III]+[S IV]
- 4. Metallicity and radiation field hardness: PAH intensities
- 5. Integrated luminosity density and clustering: Intensity mapping e.g., [O III] 88 μm

#### Spectroscopic Sensitivity





Very large sensitivity gain compared to previous, extant, and planned capabilities.

Faster spectroscopy survey capability than SPICA because of long slits.

Matt Bradford

## **GEP Mission Summary**

| GEP Mission Parameters     |                                               |  |  |  |  |  |
|----------------------------|-----------------------------------------------|--|--|--|--|--|
| Target Launch Date         | January 2029                                  |  |  |  |  |  |
| Orbit                      | Sun-Earth L2                                  |  |  |  |  |  |
| Observing Mode             | Dedicated Surveys                             |  |  |  |  |  |
| Duration                   | 4 Years                                       |  |  |  |  |  |
| GEP Payload                |                                               |  |  |  |  |  |
| Telescope                  | 2.0 m, 4 K, unobscured, SiC                   |  |  |  |  |  |
| Detectors                  | Kinetic Inductance Detectors                  |  |  |  |  |  |
| GEP Imager (GEP-I)         |                                               |  |  |  |  |  |
| Wavebands                  | 23 bands covering 10-400 µm                   |  |  |  |  |  |
| $R(\lambda/\Delta\lambda)$ | 8 (10-95 μm), 3.5 (95-400 μm)                 |  |  |  |  |  |
| Surveys and Target Depths  | All sky, ~1 mJy                               |  |  |  |  |  |
|                            | 300 square degrees, ~50 µJy                   |  |  |  |  |  |
|                            | 30 square degrees, ~20 µJy                    |  |  |  |  |  |
|                            | 3 square degrees, ~5 µJy                      |  |  |  |  |  |
| GEP Spectrometer (GEP-S)   |                                               |  |  |  |  |  |
| Bands                      | 24-42, 40-70, 66-116, 110-193 μm              |  |  |  |  |  |
| $R(\lambda/\Delta\lambda)$ | 200                                           |  |  |  |  |  |
| Surveys                    | Selected galaxies, 1.5 and 100 square degrees |  |  |  |  |  |



#### **Amazing GEP Team**

Katey Alatalo, Rashied Amini, Lee Armus, Andrew Benson, Matt Bradford, Jeremy Darling, Peter Day, Jeanette Domber, Duncan Farrah, Adalyn Fyhrie, Jason Glenn-PI, Mark Gordon, Brandon Hensley, Sarah Lipscy, Bradley Moore, Desika Narayanan, Seb Oliver, Ben Oppenheimer, Dave Redding, Michael Rodgers, Erik Rosolowsky, Mark Shannon, Raphael Shirley, John Steeves, Xander Tielens, Carole Tucker, Jonas Zmuidzinas

## Extra Slides



# Feedback into the ISM and Star Formation Activity



GEP offers multiple means for understanding feedback

- Concurrent starformation and AGN accretion rates
- High-velocity outflows in stacked spectra
- Detailed spectroscopy of extra planar gas in nearby galaxies

# Testing Galaxy Formation and Evolution Theory





Projected correlation functions for bolometric IR luminosity (solid lines) and stellar mass (dashed lines) in a 1.0 < z < 1.2 redshift slice (30 sq deg survey).

Galaxy mass correlates strongly with halo mass; bolometric IR luminosity is predicted to correlate less with halo mass since even galaxies in low mass halos can have occasional strong starbursts.

# State of the Art: Cosmic Star Formation History



Madau & Dickinson 2014 ARAA

# State of the Art: Far-Infrared Galaxy Luminosity Functions



Madau and Dickinson 2014, Gruppioni et al. 2013



#### **Extragalactic Source Confusion**

- Issue only for  $\lambda > 70 \ \mu m$
- To be mitigated with, e.g., XID+ (Oliver et al.)
- $\lambda > 100 \ \mu m$  important for FIR luminosities

Flux densities can be extracted with high fidelity down to the beam FWHM using shorter-wavelength positional priors (Raphael Shirley).





# Some IR Lines Accessed by GEP

| Species | Rest λ<br>(μm) | Ionization<br>Energy<br>(eV) | Traces     | Typical Line<br>Luminosity<br>× 10 <sup>-4</sup> L <sub>FIR</sub> |  |
|---------|----------------|------------------------------|------------|-------------------------------------------------------------------|--|
| [Ne II] | 12.8           | 21.6                         | SF         | 3                                                                 |  |
| [Ne V]  | 14.3           | 97.1                         | AGN        | 2                                                                 |  |
| [Ne V]  | 24.3           | 97.1                         | AGN        | 2                                                                 |  |
| [O IV]  | 25.9           | 54.9                         | AGN (& SF) | 5                                                                 |  |
| [S III] | 33.5           | 23.3                         | SF         | 3                                                                 |  |
| [Si II] | 34.8           | 8.2                          | SF         | 4                                                                 |  |
| [O III] | 51.8           | 35.1                         | SF (& AGN) | 20                                                                |  |
| [O I]   | 63.2           | N/A                          | SF         | 10                                                                |  |
| [O III] | 88.4           | 35.1                         | SF (& AGN) | 8                                                                 |  |
| [N II]  | 122            | 14.5                         | SF 2       |                                                                   |  |
| [O I]   | 146            | N/A                          | SF         | 3                                                                 |  |
| [C II]  | 158            | 11.3                         | SF         | 20                                                                |  |



Line carrying  $10^{-3} L_{FIR}$  for  $10^{12} L_{\odot}$  galaxy detectable at  $z = 2, 5\sigma, \sim 1$  hour

Adapted from Spinoglio 2013

# Feedback: Evidence from Extraplanar Gas



#### GEP-S mapping to observe stellar feedback



GEP-S should observe these outflows in dozens of nearby galaxies in [C II] 158 µm. This is not possible with sub-orbital platforms.

Outflows from simulations by Walch et al. 2015 (private comm. to M. Bradford)

#### 1 of 3 means for identifying obscured AGN: PAH features are weaker compared to star-formation-dominated galaxies



Spectral models from Dale et al. 2014 – models do not include MIR/FIR atomic finestructure lines

#### **FIR Fine-Structure Lines**



#### Spectrometer: GEP-S (KIDs)

•  $R = \lambda / \Delta \lambda = 200$ 

 Long slits (3.8' – 10') enable extended-object observations and 'blind' surveys



| GEP-S BAND            | 1       | 2       | 3        | 4         |
|-----------------------|---------|---------|----------|-----------|
| WAVELENGTHS (μm)      | 24 - 42 | 40 - 70 | 66 - 116 | 110 - 193 |
| SLIT LENGTH (arc min) | 3.8     | 6.4     | 6.0      | 10.0      |

# GEP-I Focal Plane (KIDs)



Continuous scanning for full spectral coverage



Spectral Resolution 10-95 µm:  $R = \lambda/\Delta\lambda = 8$ 95-400 µm:  $R = \lambda/\Delta\lambda = 3.5$ 

FoV and Sampling  $0.5^{\circ} \times 0.1^{\circ}$   $\lambda < 70 \ \mum$ :  $3.43^{"}$  pixels  $\lambda > 70 \ \mum$ : Nyquist

# Galaxy Evolution Probe KIDs

- 50,000 KIDs split evenly between imager and spectrometer
- Why baseline KIDs?
  - Simple architecture, simple cryogenic readout, one focal plane technology for all wavelengths.





Day, LeDuc, Fyhrie, Glenn, Perido, Zmuidzinas

Technology development plan: MIR KIDs ( $10 - 100 \ \mu m$ ), readout



# Extragalactic Source Confusion: Why a 2.0 m aperture?



Based on Bethermin et al. 2012 models

# Astrophysically Limited NEPs

